Search results for "Lagrangian tracking"

showing 2 items of 2 documents

Interaction between turbulent structures and particles in roughened channel

2016

Abstract The distribution of inertial particles in turbulent flows is highly non-uniform and is driven by the local dynamics of the turbulent structures of the underlying carrier flow field. In the specific context of dilute particle-laden wall-bounded flows, deposition and resuspension mechanisms are dominated by the interaction between inertial particles and coherent turbulent structures characteristic of the wall region. The macroscopic behavior of these two-phase systems is influenced by particle inertia, which plays a role at the microscale of a single dispersed element. These turbulent structures, which control the turbulent regeneration cycles, are strongly affected by the wall rough…

DNSmedia_common.quotation_subjectDirect numerical simulationGeneral Physics and AstronomyContext (language use)Lagrangian particle trackingInertia01 natural sciencesSettore ICAR/01 - Idraulica010305 fluids & plasmasPhysics::Fluid DynamicsPhysics and Astronomy (all)symbols.namesake0103 physical sciences010306 general physicsDispersion (water waves)media_commonFluid Flow and Transfer ProcessesPhysicsTurbulenceMechanical EngineeringParticle-laden flowReynolds numberMechanicsTurbulenceClassical mechanicssymbolsParticleLagrangian trackingParticle mass fluxRoughneInternational Journal of Multiphase Flow
researchProduct

Solid sediment transport in turbulent channel flow over irregular rough boundaries

2017

Abstract The presence of a loading of dispersed particles in a turbulent flow affects the dynamics of the carrier flow field which, in turn, drives grains movement. The focus of the paper is on the analysis of the coupling effects between near-bed turbulence structures and the dynamics of dispersed suspended solid particles in wall-bounded turbulent multiphase flows. We consider turbulent horizontal channel flows bounded by rough boundaries. The friction Reynolds number of the unladen flow is R e τ = 180 and the dispersed phase spans one order of magnitude of particle diameter. To analyze sedimentation and suspended phase transport, we adopt concepts and modeling ideas derived from the Eule…

Sedimentation (water treatment)Condensed Matter PhysicLagrangian particle tracking01 natural sciences010305 fluids & plasmasSettore ICAR/01 - IdraulicaPhysics::Fluid Dynamicssymbols.namesakePhase (matter)0103 physical sciences010306 general physicsPhysicsFluid Flow and Transfer ProcessesTurbulenceMechanical EngineeringParticle-laden flowReynolds numberParticle-laden flowsMechanicsCondensed Matter PhysicsTurbulenceClassical mechanicsFlow (mathematics)Point-particle DNSsymbolsLagrangian trackingParticle mass fluxRoughneOrder of magnitude
researchProduct